CampBuddy/Camp.Buddy v2.2.1/Camp_Buddy-2.2.1-pc/renpy/display/im.py
2025-03-03 23:00:33 +01:00

1786 lines
48 KiB
Python

# Copyright 2004-2019 Tom Rothamel <pytom@bishoujo.us>
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# This file contains the new image code, which includes provisions for
# size-based caching and constructing images from operations (like
# cropping and scaling).
from __future__ import print_function
import renpy.display
import math
import zipfile
import cStringIO
import threading
import time
import io
# This is an entry in the image cache.
class CacheEntry(object):
def __init__(self, what, surf, bounds):
# The object that is being cached (which needs to be
# hashable and comparable).
self.what = what
# The pygame surface corresponding to the cached object. This may be
# None if we've tossed the surface.
self.surf = surf
# The sizes of surf.
self.width, self.height = surf.get_size()
# The texture corresponding to the visible area of the cached object.
# This may be None if no texture has been loaded.
self.texture = None
# The bounds of the texture within the width and height.
self.bounds = bounds
# The time when this cache entry was last used.
self.time = 0
def size(self):
rv = 0
if self.surf is not None:
rv += self.width * self.height
if self.texture is not None:
rv += self.bounds[2] * self.bounds[3]
return rv
# This is the singleton image cache.
class Cache(object):
def __init__(self):
# The current arbitrary time. (Increments by one for each
# interaction.)
self.time = 0
# A map from Image object to CacheEntry.
self.cache = { }
# A list of Image objects that we want to preload.
self.preloads = [ ]
# False if this is not the first preload in this tick.
self.first_preload_in_tick = True
# A lock that must be held when updating the cache.
self.lock = threading.Condition()
# A lock that mist be held to notify the preload thread.
self.preload_lock = threading.Condition()
# Is the preload_thread alive?
self.keep_preloading = True
# A map from image object to surface, only for objects that have
# been pinned into memory.
self.pin_cache = { }
# Images that we tried, and failed, to preload.
self.preload_blacklist = set()
# The size of the cache, in pixels.
self.cache_limit = 0
# The preload thread.
self.preload_thread = threading.Thread(target=self.preload_thread_main, name="preloader")
self.preload_thread.setDaemon(True)
self.preload_thread.start()
# Have we been added this tick?
self.added = set()
# A list of (time, filename, preload) tuples. This is updated when
# config.developer is True and an image is loaded. Preload is a
# flag that is true if the image was loaded from the preload
# thread. The log is limited to 100 entries, and the newest entry
# is first.
#
# This is only updated when config.developer is True.
self.load_log = [ ]
def get_total_size(self):
"""
Returns the total size of the surfaces and textures that make up the
cache, in pixels.
"""
rv = sum(i.size() for i in self.cache.values())
# print("Total cache size: {:.1f}/{:.1f} MB (Textures {:.1f} MB)".format(
# 4.0 * rv / 1024 / 1024,
# 4.0 * self.cache_limit / 1024 / 1024,
# 1.0 * renpy.exports.get_texture_size()[0] / 1024 / 1024,
# ))
return rv
def get_current_size(self, generations):
"""
Returns the size of the most recent `generation` generations of
the cache. (1 is the current, 2 is the current and one before).
"""
start = self.time - generations
rv = sum(i.size() for i in self.cache.values() if i.time > start)
return rv
def init(self):
"""
Updates the cache object to make use of settings that might be provided
by the game-maker.
"""
if renpy.config.image_cache_size is not None:
self.cache_limit = 2 * renpy.config.image_cache_size * renpy.config.screen_width * renpy.config.screen_height
else:
self.cache_limit = int(renpy.config.image_cache_size_mb * 1024 * 1024 // 4)
def quit(self): # @ReservedAssignment
if not self.preload_thread.isAlive():
return
with self.preload_lock:
self.keep_preloading = False
self.preload_lock.notify()
self.preload_thread.join()
self.clear()
# Clears out the cache.
def clear(self):
self.lock.acquire()
self.preloads = [ ]
self.pin_cache = { }
self.cache = { }
self.first_preload_in_tick = True
self.added.clear()
self.lock.release()
# Increments time, and clears the list of images to be
# preloaded.
def tick(self):
with self.lock:
self.time += 1
self.preloads = [ ]
self.first_preload_in_tick = True
self.added.clear()
if renpy.config.debug_image_cache:
renpy.display.ic_log.write("----")
filename, line = renpy.exports.get_filename_line()
renpy.display.ic_log.write("%s %d", filename, line)
# The preload thread can deal with this update, so we don't need
# to lock things.
def end_tick(self):
self.preloads = [ ]
# This returns the pygame surface corresponding to the provided
# image. It also takes care of updating the age of images in the
# cache to be current, and maintaining the size of the current
# generation of images.
def get(self, image, predict=False, texture=False, render=False):
if render:
texture = True
optimize_bounds = renpy.config.optimize_texture_bounds
if not isinstance(image, ImageBase):
raise Exception("Expected an image of some sort, but got" + str(image) + ".")
if not image.cache:
surf = image.load()
renpy.display.render.mutated_surface(surf)
return surf
# First try to grab the image out of the cache without locking it.
ce = self.cache.get(image, None)
if ce is not None:
ce.time = self.time
if texture and (ce.texture is not None):
if predict:
return None
if render:
rv = renpy.display.render.Render(ce.width, ce.height)
rv.blit(ce.texture, ce.bounds[:2])
return rv
else:
return ce.texture
if ce.surf is None:
ce = None
# Otherwise, we load the image ourselves.
if ce is None:
try:
if image in self.pin_cache:
surf = self.pin_cache[image]
else:
if not predict:
with renpy.game.ExceptionInfo("While loading %r:", image):
surf = image.load()
else:
surf = image.load()
except:
raise
w, h = surf.get_size()
if optimize_bounds:
bounds = tuple(surf.get_bounding_rect())
w = bounds[2]
h = bounds[3]
else:
bounds = (0, 0, w, h)
with self.lock:
ce = CacheEntry(image, surf, bounds)
self.cache[image] = ce
# Indicate that this surface had changed.
renpy.display.render.mutated_surface(ce.surf)
if renpy.config.debug_image_cache:
if predict:
renpy.display.ic_log.write("Added %r (%.02f%%)", ce.what, 100.0 * self.get_total_size() / self.cache_limit)
else:
renpy.display.ic_log.write("Total Miss %r", ce.what)
# Move it into the current generation.
ce.time = self.time
# Load the texture.
if texture:
if ce.texture is None:
texsurf = ce.surf
if ce.bounds != (0, 0, ce.width, ce.height):
texsurf = ce.surf.subsurface(ce.bounds)
renpy.display.render.mutated_surface(texsurf)
ce.texture = renpy.display.draw.load_texture(texsurf)
if not predict:
if render:
rv = renpy.display.render.Render(ce.width, ce.height)
rv.blit(ce.texture, ce.bounds[:2])
else:
rv = ce.texture
else:
rv = None
else:
rv = ce.surf
if not renpy.config.cache_surfaces:
if ce.surf is not None:
renpy.display.draw.mutated_surface(ce.surf)
ce.surf = None
if (ce.surf is None) and (ce.texture is None):
with self.lock:
self.kill(ce)
# Done... return the surface.
return rv
# This kills off a given cache entry.
def kill(self, ce):
# Let the texture cache know we're not needed.
if ce.surf is not None:
renpy.display.draw.mutated_surface(ce.surf)
del self.cache[ce.what]
if renpy.config.debug_image_cache:
renpy.display.ic_log.write("Removed %r", ce.what)
def cleanout(self):
"""
Cleans out the cache, if it's gotten too large. Returns True
if the cache is smaller than the size limit, or False if it's
bigger and we don't want to continue preloading.
"""
# If we're within the limit, return.
if self.get_total_size() <= self.cache_limit:
return True
# If we're outside the cache limit, we need to go and start
# killing off some of the entries until we're back inside it.
for ce in sorted(self.cache.itervalues(), key=lambda a : a.time):
if ce.time == self.time:
# If we're bigger than the limit, and there's nothing
# to remove, we should stop the preloading right away.
return False
# Otherwise, kill off the given cache entry.
self.kill(ce)
# If we're in the limit, we're done.
if self.get_total_size() <= self.cache_limit:
break
return True
def preload_texture(self, im):
"""
Preloads `im` into the cache, and loads the corresponding texture
into the GPU.
"""
self.get(im, predict=True, texture=True)
def get_texture(self, im):
"""
Gets `im` as a texture. Used when prediction is being used to load
the actual image.
"""
self.get(im, texture=True)
# Called to report that a given image would like to be preloaded.
def preload_image(self, im):
if not isinstance(im, ImageBase):
return
with self.lock:
if im in self.added:
return
self.added.add(im)
ce = self.cache.get(im, None)
if ce and ce.texture:
ce.time = self.time
in_cache = True
else:
self.preloads.append(im)
in_cache = False
if not in_cache:
with self.preload_lock:
self.preload_lock.notify()
if in_cache and renpy.config.debug_image_cache:
renpy.display.ic_log.write("Kept %r", im)
def start_prediction(self):
"""
Called at the start of prediction, to ensure the thread runs
at least once to clean out the cache.
"""
with self.preload_lock:
self.preload_lock.notify()
def preload_thread_main(self):
while self.keep_preloading:
self.preload_lock.acquire()
self.preload_lock.wait()
self.preload_lock.release()
self.preload_thread_pass()
def preload_thread_pass(self):
while self.preloads and self.keep_preloading:
# If the size of the current generation is bigger than the
# total cache size, stop preloading.
with self.lock:
# If the cache is overfull, clean it out.
if not self.cleanout():
if renpy.config.debug_image_cache:
for i in self.preloads:
renpy.display.ic_log.write("Overfull %r", i)
self.preloads = [ ]
break
try:
image = self.preloads.pop(0)
if image not in self.preload_blacklist:
try:
self.preload_texture(image)
except:
self.preload_blacklist.add(image)
except:
pass
with self.lock:
self.cleanout()
# If we have time, preload pinned images.
if self.keep_preloading and not renpy.game.less_memory:
workset = set(renpy.store._cache_pin_set)
# Remove things that are not in the workset from the pin cache,
# and remove things that are in the workset from pin cache.
for i in self.pin_cache.keys():
if i in workset:
workset.remove(i)
else:
surf = self.pin_cache[i]
del self.pin_cache[i]
# For each image in the worklist...
for image in workset:
if image in self.preload_blacklist:
continue
# If we have normal preloads, break out.
if self.preloads:
break
try:
surf = image.load()
self.pin_cache[image] = surf
renpy.display.draw.load_texture(surf)
except:
self.preload_blacklist.add(image)
def add_load_log(self, filename):
if not renpy.config.developer:
return
preload = (threading.current_thread() is self.preload_thread)
self.load_log.insert(0, (time.time(), filename, preload))
while len(self.load_log) > 100:
self.load_log.pop()
# The cache object.
cache = Cache()
def free_memory():
"""
Frees some memory.
"""
cache.clear()
class ImageBase(renpy.display.core.Displayable):
"""
This is the base class for all of the various kinds of images that
we can possibly have.
"""
__version__ = 1
def after_upgrade(self, version):
if version < 1:
self.cache = True
def __init__(self, *args, **properties):
self.rle = properties.pop('rle', None)
self.cache = properties.pop('cache', True)
properties.setdefault('style', 'image')
super(ImageBase, self).__init__(**properties)
self.identity = (type(self).__name__, ) + args
def __hash__(self):
return hash(self.identity)
def __eq__(self, other):
if not isinstance(other, ImageBase):
return False
return self.identity == other.identity
def __repr__(self):
return "<" + " ".join([repr(i) for i in self.identity]) + ">"
def load(self):
"""
This function is called by the image cache code to cause this
image to be loaded. It's expected that children of this class
would override this.
"""
raise Exception("load method not implemented.")
def render(self, w, h, st, at):
return cache.get(self, render=True)
def predict_one(self):
renpy.display.predict.image(self)
def predict_files(self):
"""
Returns a list of files that will be accessed when this image
operation is performed.
"""
return [ ]
class Image(ImageBase):
"""
This image manipulator loads an image from a file.
"""
def __init__(self, filename, **properties):
"""
@param filename: The filename that the image will be loaded from.
"""
super(Image, self).__init__(filename, **properties)
self.filename = filename
def __unicode__(self):
if len(self.filename) < 20:
return u"Image %r" % self.filename
else:
return u"Image \u2026%s" % self.filename[-20:]
def get_hash(self):
return renpy.loader.get_hash(self.filename)
def load(self, unscaled=False):
cache.add_load_log(self.filename)
try:
if unscaled:
surf = renpy.display.pgrender.load_image_unscaled(renpy.loader.load(self.filename), self.filename)
else:
surf = renpy.display.pgrender.load_image(renpy.loader.load(self.filename), self.filename)
return surf
except Exception as e:
if renpy.config.missing_image_callback:
im = renpy.config.missing_image_callback(self.filename)
if im is None:
raise e
return im.load()
raise
def predict_files(self):
if renpy.loader.loadable(self.filename):
return [ self.filename ]
else:
if renpy.config.missing_image_callback:
im = renpy.config.missing_image_callback(self.filename)
if im is not None:
return im.predict_files()
return [ self.filename ]
class Data(ImageBase):
"""
:doc: im_im
This image manipulator loads an image from binary data.
`data`
A string of bytes, giving the compressed image data in a standard
file format.
`filename`
A "filename" associated with the image. This is used to provide a
hint to Ren'Py about the format of `data`. (It's not actually
loaded from disk.)
"""
def __init__(self, data, filename, **properties):
super(Data, self).__init__(data, filename, **properties)
self.data = data
self.filename = filename
def __unicode__(self):
return u"im.Data(%r)" % self.filename
def load(self):
f = io.BytesIO(self.data)
return renpy.display.pgrender.load_image(f, self.filename)
class ZipFileImage(ImageBase):
def __init__(self, zipfilename, filename, mtime=0, **properties):
super(ZipFileImage, self).__init__(zipfilename, filename, mtime, **properties)
self.zipfilename = zipfilename
self.filename = filename
def load(self):
try:
zf = zipfile.ZipFile(self.zipfilename, 'r')
data = zf.read(self.filename)
sio = cStringIO.StringIO(data)
rv = renpy.display.pgrender.load_image(sio, self.filename)
zf.close()
return rv
except:
return renpy.display.pgrender.surface((2, 2), True)
def predict_files(self):
return [ ]
class Composite(ImageBase):
"""
:undocumented:
This image manipulator composites multiple images together to
form a single image.
The `size` should be a (width, height) tuple giving the size
of the composed image.
The remaining positional arguments are interpreted as groups of
two. The first argument in a group should be an (x, y) tuple,
while the second should be an image manipulator. The image
produced by the image manipulator is composited at the location
given by the tuple.
::
image girl clothed happy = im.Composite(
(300, 600),
(0, 0), "girl_body.png",
(0, 0), "girl_clothes.png",
(100, 100), "girl_happy.png"
)
"""
def __init__(self, size, *args, **properties):
super(Composite, self).__init__(size, *args, **properties)
if len(args) % 2 != 0:
raise Exception("Composite requires an odd number of arguments.")
self.size = size
self.positions = args[0::2]
self.images = [ image(i) for i in args[1::2] ]
def get_hash(self):
rv = 0
for i in self.images:
rv += i.get_hash()
return rv
def load(self):
if self.size:
size = self.size
else:
size = cache.get(self.images[0]).get_size()
rv = renpy.display.pgrender.surface(size, True)
for pos, im in zip(self.positions, self.images):
rv.blit(cache.get(im), pos)
return rv
def predict_files(self):
rv = [ ]
for i in self.images:
rv.extend(i.predict_files())
return rv
class Scale(ImageBase):
"""
:undocumented:
An image manipulator that scales `im` (an image manipulator) to
`width` and `height`.
If `bilinear` is true, then bilinear interpolation is used for
the scaling. Otherwise, nearest neighbor interpolation is used.
::
image logo scale = im.Scale("logo.png", 100, 150)
"""
def __init__(self, im, width, height, bilinear=True, **properties):
im = image(im)
super(Scale, self).__init__(im, width, height, bilinear, **properties)
self.image = im
self.width = int(width)
self.height = int(height)
self.bilinear = bilinear
def get_hash(self):
return self.image.get_hash()
def load(self):
child = cache.get(self.image)
if self.bilinear:
try:
renpy.display.render.blit_lock.acquire()
rv = renpy.display.scale.smoothscale(child, (self.width, self.height))
finally:
renpy.display.render.blit_lock.release()
else:
try:
renpy.display.render.blit_lock.acquire()
rv = renpy.display.pgrender.transform_scale(child, (self.width, self.height))
finally:
renpy.display.render.blit_lock.release()
return rv
def predict_files(self):
return self.image.predict_files()
class FactorScale(ImageBase):
"""
:doc: im_im
An image manipulator that scales `im` (a second image manipulator)
to `width` times its original `width`, and `height` times its
original height. If `height` is omitted, it defaults to `width`.
If `bilinear` is true, then bilinear interpolation is used for
the scaling. Otherwise, nearest neighbor interpolation is used.
::
image logo doubled = im.FactorScale("logo.png", 1.5)
"""
def __init__(self, im, width, height=None, bilinear=True, **properties):
if height is None:
height = width
im = image(im)
super(FactorScale, self).__init__(im, width, height, bilinear, **properties)
self.image = im
self.width = width
self.height = height
self.bilinear = bilinear
def get_hash(self):
return self.image.get_hash()
def load(self):
surf = cache.get(self.image)
width, height = surf.get_size()
width = int(width * self.width)
height = int(height * self.height)
if self.bilinear:
try:
renpy.display.render.blit_lock.acquire()
rv = renpy.display.scale.smoothscale(surf, (width, height))
finally:
renpy.display.render.blit_lock.release()
else:
try:
renpy.display.render.blit_lock.acquire()
rv = renpy.display.pgrender.transform_scale(surf, (width, height))
finally:
renpy.display.render.blit_lock.release()
return rv
def predict_files(self):
return self.image.predict_files()
class Flip(ImageBase):
"""
:doc: im_im
An image manipulator that flips `im` (an image manipulator)
vertically or horizontally. `vertical` and `horizontal` control
the directions in which the image is flipped.
::
image eileen flip = im.Flip("eileen_happy.png", vertical=True)
"""
def __init__(self, im, horizontal=False, vertical=False, **properties):
if not (horizontal or vertical):
raise Exception("im.Flip must be called with a true value for horizontal or vertical.")
im = image(im)
super(Flip, self).__init__(im, horizontal, vertical, **properties)
self.image = im
self.horizontal = horizontal
self.vertical = vertical
def get_hash(self):
return self.image.get_hash()
def load(self):
child = cache.get(self.image)
try:
renpy.display.render.blit_lock.acquire()
rv = renpy.display.pgrender.flip(child, self.horizontal, self.vertical)
finally:
renpy.display.render.blit_lock.release()
return rv
def predict_files(self):
return self.image.predict_files()
class Rotozoom(ImageBase):
"""
This is an image manipulator that is a smooth rotation and zoom of another image manipulator.
"""
def __init__(self, im, angle, zoom, **properties):
"""
@param im: The image to be rotozoomed.
@param angle: The number of degrees counterclockwise the image is
to be rotated.
@param zoom: The zoom factor. Numbers that are greater than 1.0
lead to the image becoming larger.
"""
im = image(im)
super(Rotozoom, self).__init__(im, angle, zoom, **properties)
self.image = im
self.angle = angle
self.zoom = zoom
def get_hash(self):
return self.image.get_hash()
def load(self):
child = cache.get(self.image)
try:
renpy.display.render.blit_lock.acquire()
rv = renpy.display.pgrender.rotozoom(child, self.angle, self.zoom)
finally:
renpy.display.render.blit_lock.release()
return rv
def predict_files(self):
return self.image.predict_files()
class Crop(ImageBase):
"""
:doc: im_im
:args: (im, rect)
An image manipulator that crops `rect`, a (x, y, width, height) tuple,
out of `im`, an image manipulator.
::
image logo crop = im.Crop("logo.png", (0, 0, 100, 307))
"""
def __init__(self, im, x, y=None, w=None, h=None, **properties):
im = image(im)
if y is None:
(x, y, w, h) = x
super(Crop, self).__init__(im, x, y, w, h, **properties)
self.image = im
self.x = x
self.y = y
self.w = w
self.h = h
def get_hash(self):
return self.image.get_hash()
def load(self):
return cache.get(self.image).subsurface((self.x, self.y,
self.w, self.h))
def predict_files(self):
return self.image.predict_files()
ramp_cache = { }
def ramp(start, end):
"""
Returns a 256 character linear ramp, where the first character has
the value start and the last character has the value end. Such a
ramp can be used as a map argument of im.Map.
"""
rv = ramp_cache.get((start, end), None)
if rv is None:
chars = [ ]
for i in range(0, 256):
i = i / 255.0
chars.append(chr(int( end * i + start * (1.0 - i) ) ) )
rv = "".join(chars)
ramp_cache[start, end] = rv
return rv
identity = ramp(0, 255)
class Map(ImageBase):
"""
This adjusts the colors of the image that is its child. It takes
as arguments 4 256 character strings. If a pixel channel has a
value of 192, then the value of the 192nd character in the string
is used for the mapped pixel component.
"""
def __init__(self, im, rmap=identity, gmap=identity, bmap=identity,
amap=identity, force_alpha=False, **properties):
im = image(im)
super(Map, self).__init__(im, rmap, gmap, bmap, amap, force_alpha, **properties)
self.image = im
self.rmap = rmap
self.gmap = gmap
self.bmap = bmap
self.amap = amap
self.force_alpha = force_alpha
def get_hash(self):
return self.image.get_hash()
def load(self):
surf = cache.get(self.image)
rv = renpy.display.pgrender.surface(surf.get_size(), True)
renpy.display.module.map(surf, rv,
self.rmap, self.gmap, self.bmap, self.amap)
return rv
def predict_files(self):
return self.image.predict_files()
class Twocolor(ImageBase):
"""
This takes as arguments two colors, white and black. The image is
mapped such that pixels in white have the white color, pixels in
black have the black color, and shades of gray are linearly
interpolated inbetween. The alpha channel is mapped linearly
between 0 and the alpha found in the white color, the black
color's alpha is ignored.
"""
def __init__(self, im, white, black, force_alpha=False, **properties):
white = renpy.easy.color(white)
black = renpy.easy.color(black)
im = image(im)
super(Twocolor, self).__init__(im, white, black, force_alpha, **properties)
self.image = im
self.white = white
self.black = black
self.force_alpha = force_alpha
def get_hash(self):
return self.image.get_hash()
def load(self):
surf = cache.get(self.image)
rv = renpy.display.pgrender.surface(surf.get_size(), True)
renpy.display.module.twomap(surf, rv,
self.white, self.black)
return rv
def predict_files(self):
return self.image.predict_files()
class Recolor(ImageBase):
"""
This adjusts the colors of the image that is its child. It takes as an
argument 4 numbers between 0 and 255, and maps each channel of the image
linearly between 0 and the supplied color.
"""
def __init__(self, im, rmul=255, gmul=255, bmul=255,
amul=255, force_alpha=False, **properties):
im = image(im)
super(Recolor, self).__init__(im, rmul, gmul, bmul, amul, force_alpha, **properties)
self.image = im
self.rmul = rmul + 1
self.gmul = gmul + 1
self.bmul = bmul + 1
self.amul = amul + 1
self.force_alpha = force_alpha
def get_hash(self):
return self.image.get_hash()
def load(self):
surf = cache.get(self.image)
rv = renpy.display.pgrender.surface(surf.get_size(), True)
renpy.display.module.linmap(surf, rv,
self.rmul, self.gmul, self.bmul, self.amul)
return rv
def predict_files(self):
return self.image.predict_files()
class Blur(ImageBase):
"""
:doc: im_im
An image manipulator that blurs the image manipulator `im` using
an elliptical kernel described by `xrad` and optionally `yrad`.
If `yrad` is None, it will take the value of `xrad` resulting in
a circular kernel being used.
::
image logo blurred = im.Blur("logo.png", 1.5)
"""
def __init__(self, im, xrad, yrad=None, **properties):
im = image(im)
super(Blur, self).__init__(im, xrad, yrad, **properties)
self.image = im
self.rx = xrad
self.ry = xrad if yrad is None else yrad
def get_hash(self):
return self.image.get_hash()
def load(self):
surf = cache.get(self.image)
ws = renpy.display.pgrender.surface(surf.get_size(), True)
rv = renpy.display.pgrender.surface(surf.get_size(), True)
renpy.display.module.blur(surf, ws, rv, self.rx, self.ry)
return rv
def predict_files(self):
return self.image.predict_files()
class MatrixColor(ImageBase):
"""
:doc: im_matrixcolor
An image operator that uses `matrix` to linearly transform the
image manipulator `im`.
`Matrix` should be a list, tuple, or :func:`im.matrix` that is 20
or 25 elements long. If the object has 25 elements, then elements
past the 20th are ignored.
When the four components of the source color are R, G, B, and A,
which range from 0.0 to 1.0; the four components of the transformed
color are R', G', B', and A', with the same range; and the elements
of the matrix are named::
[ a, b, c, d, e,
f, g, h, i, j,
k, l, m, n, o,
p, q, r, s, t ]
the transformed colors can be computed with the formula::
R' = (a * R) + (b * G) + (c * B) + (d * A) + e
G' = (f * R) + (g * G) + (h * B) + (i * A) + j
B' = (k * R) + (l * G) + (m * B) + (n * A) + o
A' = (p * R) + (q * G) + (r * B) + (s * A) + t
The components of the transformed color are clamped to the
range [0.0, 1.0].
"""
def __init__(self, im, matrix, **properties):
im = image(im)
if len(matrix) != 20 and len(matrix) != 25:
raise Exception("ColorMatrix expects a 20 or 25 element matrix, got %d elements." % len(matrix))
matrix = tuple(matrix)
super(MatrixColor, self).__init__(im, matrix, **properties)
self.image = im
self.matrix = matrix
def get_hash(self):
return self.image.get_hash()
def load(self):
surf = cache.get(self.image)
rv = renpy.display.pgrender.surface(surf.get_size(), True)
renpy.display.module.colormatrix(surf, rv, self.matrix)
return rv
def predict_files(self):
return self.image.predict_files()
class matrix(tuple):
"""
:doc: im_matrixcolor
Constructs an im.matrix object from `matrix`. im.matrix objects
support The operations supported are matrix multiplication, scalar
multiplication, element-wise addition, and element-wise
subtraction. These operations are invoked using the standard
mathematical operators (\\*, \\*, +, and -, respectively). If two
im.matrix objects are multiplied, matrix multiplication is
performed, otherwise scalar multiplication is used.
`matrix` is a 20 or 25 element list or tuple. If it is 20 elements
long, it is padded with (0, 0, 0, 0, 1) to make a 5x5 matrix,
suitable for multiplication.
"""
def __new__(cls, *args):
if len(args) == 1:
args = tuple(args[0])
if len(args) == 20:
args = args + (0, 0, 0, 0, 1)
if len(args) != 25:
raise Exception("Matrix expects to be given 20 or 25 entries, not %d." % len(args))
return tuple.__new__(cls, args)
def mul(self, a, b):
if not isinstance(a, matrix):
a = matrix(a)
if not isinstance(b, matrix):
if isinstance(b, renpy.easy.Color):
return NotImplemented
b = matrix(b)
result = [ 0 ] * 25
for y in range(0, 5):
for x in range(0, 5):
for i in range(0, 5):
result[x + y * 5] += a[x + i * 5] * b[i + y * 5]
return matrix(result)
def scalar_mul(self, other):
other = float(other)
return matrix([ i * other for i in self ])
def vector_mul(self, o):
return (o[0]*self[0] + o[1]*self[1] + o[2]*self[2] + o[3]*self[3] + self[4],
o[0]*self[5] + o[1]*self[6] + o[2]*self[7] + o[3]*self[8] + self[9],
o[0]*self[10] + o[1]*self[11] + o[2]*self[12] + o[3]*self[13] + self[14],
o[0]*self[15] + o[1]*self[16] + o[2]*self[17] + o[3]*self[18] + self[19],
1)
def __add__(self, other):
if isinstance(other, (int, float)):
other = float(other)
return matrix([ i + other for i in self ])
other = matrix(other)
return matrix([ i + j for i, j in zip(self, other)])
__radd__ = __add__
def __sub__(self, other):
return self + other * -1
def __rsub__(self, other):
return self * -1 + other
def __mul__(self, other):
if isinstance(other, (int, float)):
return self.scalar_mul(other)
return self.mul(self, other)
def __rmul__(self, other):
if isinstance(other, (int, float)):
return self.scalar_mul(other)
return self.mul(other, self)
def __repr__(self):
return """\
im.matrix(%f, %f, %f, %f, %f.
%f, %f, %f, %f, %f,
%f, %f, %f, %f, %f,
%f, %f, %f, %f, %f,
%f, %f, %f, %f, %f)""" % self
@staticmethod
def identity():
"""
:doc: im_matrixcolor
:name: im.matrix.identity
Returns an identity matrix, one that does not change color or
alpha.
"""
return matrix(1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 1, 0)
@staticmethod
def saturation(level, desat=(0.2126, 0.7152, 0.0722)):
"""
:doc: im_matrixcolor
:name: im.matrix.saturation
Returns an im.matrix that alters the saturation of an
image. The alpha channel is untouched.
`level`
The amount of saturation in the resulting image. 1.0 is
the unaltered image, while 0.0 is grayscale.
`desat`
This is a 3-element tuple that controls how much of the
red, green, and blue channels will be placed into all
three channels of a fully desaturated image. The default
is based on the constants used for the luminance channel
of an NTSC television signal. Since the human eye is
mostly sensitive to green, more of the green channel is
kept then the other two channels.
"""
r, g, b = desat
def I(a, b):
return a + (b - a) * level
return matrix(I(r, 1), I(g, 0), I(b, 0), 0, 0,
I(r, 0), I(g, 1), I(b, 0), 0, 0,
I(r, 0), I(g, 0), I(b, 1), 0, 0,
0, 0, 0, 1, 0)
@staticmethod
def desaturate():
"""
:doc: im_matrixcolor
:name: im.matrix.desaturate
Returns an im.matrix that desaturates the image (makes it
grayscale). This is equivalent to calling
im.matrix.saturation(0).
"""
return matrix.saturation(0.0)
@staticmethod
def tint(r, g, b):
"""
:doc: im_matrixcolor
:name: im.matrix.tint
Returns an im.matrix that tints an image, without changing
the alpha channel. `r`, `g`, and `b` should be numbers between
0 and 1, and control what fraction of the given channel is
placed into the final image. (For example, if `r` is .5, and
the value of the red channel is 100, the transformed color
will have a red value of 50.)
"""
return matrix(r, 0, 0, 0, 0,
0, g, 0, 0, 0,
0, 0, b, 0, 0,
0, 0, 0, 1, 0)
@staticmethod
def invert():
"""
:doc: im_matrixcolor
:name: im.matrix.invert
Returns an im.matrix that inverts the red, green, and blue
channels of the image without changing the alpha channel.
"""
return matrix(-1, 0, 0, 0, 1,
0, -1, 0, 0, 1,
0, 0, -1, 0, 1,
0, 0, 0, 1, 0)
@staticmethod
def brightness(b):
"""
:doc: im_matrixcolor
:name: im.matrix.brightness
Returns an im.matrix that alters the brightness of an image.
`b`
The amount of change in image brightness. This should be
a number between -1 and 1, with -1 the darkest possible
image and 1 the brightest.
"""
return matrix(1, 0, 0, 0, b,
0, 1, 0, 0, b,
0, 0, 1, 0, b,
0, 0, 0, 1, 0)
@staticmethod
def opacity(o):
"""
:doc: im_matrixcolor
:name: im.matrix.opacity
Returns an im.matrix that alters the opacity of an image. An
`o` of 0.0 is fully transparent, while 1.0 is fully opaque.
"""
return matrix(1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, o, 0)
@staticmethod
def contrast(c):
"""
:doc: im_matrixcolor
:name: im.matrix.contrast
Returns an im.matrix that alters the contrast of an image. `c` should
be greater than 0.0, with values between 0.0 and 1.0 decreasing contrast, and
values greater than 1.0 increasing contrast.
"""
return matrix.brightness(-.5) * matrix.tint(c, c, c) * matrix.brightness(.5)
# from http://www.gskinner.com/blog/archives/2005/09/flash_8_source.html
@staticmethod
def hue(h):
"""
:doc: im_matrixcolor
:name: im.matrix.hue
Returns an im.matrix that rotates the hue by `h` degrees, while
preserving luminosity.
"""
h = h * math.pi / 180
cosVal = math.cos(h)
sinVal = math.sin(h)
lumR = 0.213
lumG = 0.715
lumB = 0.072
return matrix(
lumR+cosVal*(1-lumR)+sinVal*(-lumR), lumG+cosVal*(-lumG)+sinVal*(-lumG), lumB+cosVal*(-lumB)+sinVal*(1-lumB), 0, 0,
lumR+cosVal*(-lumR)+sinVal*(0.143), lumG+cosVal*(1-lumG)+sinVal*(0.140), lumB+cosVal*(-lumB)+sinVal*(-0.283), 0, 0,
lumR+cosVal*(-lumR)+sinVal*(-(1-lumR)), lumG+cosVal*(-lumG)+sinVal*(lumG), lumB+cosVal*(1-lumB)+sinVal*(lumB), 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 1
)
@staticmethod
def colorize(black_color, white_color):
"""
:doc: im_matrixcolor
:name: im.matrix.colorize
Returns an im.matrix that colorizes a black and white image.
`black_color` and `white_color` are Ren'Py style colors, so
they may be specified as strings or tuples of (0-255) color
values. ::
# This makes black colors red, and white colors blue.
image logo colored = im.MatrixColor(
"bwlogo.png",
im.matrix.colorize("#f00", "#00f"))
"""
(r0, g0, b0, _a0) = renpy.easy.color(black_color)
(r1, g1, b1, _a1) = renpy.easy.color(white_color)
r0 /= 255.0
g0 /= 255.0
b0 /= 255.0
r1 /= 255.0
g1 /= 255.0
b1 /= 255.0
return matrix((r1-r0), 0, 0, 0, r0,
0, (g1-g0), 0, 0, g0,
0, 0, (b1-b0), 0, b0,
0, 0, 0, 1, 0)
def Grayscale(im, desat=(0.2126, 0.7152, 0.0722), **properties):
"""
:doc: im_im
:args: (im, **properties)
An image manipulator that creates a desaturated version of the image
manipulator `im`.
"""
return MatrixColor(im, matrix.saturation(0.0, desat), **properties)
def Sepia(im, tint=(1.0, .94, .76), desat=(0.2126, 0.7152, 0.0722), **properties):
"""
:doc: im_im
:args: (im, **properties)
An image manipulator that creates a sepia-toned version of the image
manipulator `im`.
"""
return MatrixColor(im, matrix.saturation(0.0, desat) * matrix.tint(tint[0], tint[1], tint[2]), **properties)
def Color(im, color):
"""
This recolors the supplied image, mapping colors such that black is
black and white is the supplied color.
"""
r, g, b, a = renpy.easy.color(color)
return Recolor(im, r, g, b, a)
def Alpha(image, alpha, **properties):
"""
Returns an alpha-mapped version of the image. Alpha is the maximum
alpha that this image can have, a number between 0.0 (fully
transparent) and 1.0 (opaque).
If an image already has an alpha channel, values in that alpha
channel are reduced as appropriate.
"""
return Recolor(image, 255, 255, 255, int(255 * alpha), force_alpha=True, **properties)
class Tile(ImageBase):
"""
:doc: im_im
An image manipulator that tiles the image manipulator `im`, until
it is `size`.
`size`
If not None, a (width, height) tuple. If None, this defaults to
(:var:`config.screen_width`, :var:`config.screen_height`).
"""
def __init__(self, im, size=None, **properties):
im = image(im)
super(Tile, self).__init__(im, size, **properties)
self.image = im
self.size = size
def get_hash(self):
return self.image.get_hash()
def load(self):
size = self.size
if size is None:
size = (renpy.config.screen_width, renpy.config.screen_height)
surf = cache.get(self.image)
rv = renpy.display.pgrender.surface(size, True)
width, height = size
sw, sh = surf.get_size()
for y in range(0, height, sh):
for x in range(0, width, sw):
rv.blit(surf, (x, y))
return rv
def predict_files(self):
return self.image.predict_files()
class AlphaMask(ImageBase):
"""
:doc: im_im
An image manipulator that takes two image manipulators, `base` and
`mask`, as arguments. It replaces the alpha channel of `base` with
the red channel of `mask`.
This is used to provide an image's alpha channel in a second
image, like having one jpeg for color data, and a second one
for alpha. In some cases, two jpegs can be smaller than a
single png file.
Note that this takes different arguments from :func:`AlphaMask`,
which uses the mask's alpha channel.
"""
def __init__(self, base, mask, **properties):
super(AlphaMask, self).__init__(base, mask, **properties)
self.base = image(base)
self.mask = image(mask)
def get_hash(self):
return self.base.get_hash() + self.image.get_hash()
def load(self):
basesurf = cache.get(self.base)
masksurf = cache.get(self.mask)
if basesurf.get_size() != masksurf.get_size():
raise Exception("AlphaMask surfaces must be the same size.")
# Used to copy the surface.
rv = renpy.display.pgrender.copy_surface(basesurf)
renpy.display.module.alpha_munge(masksurf, rv, identity)
return rv
def predict_files(self):
return self.base.predict_files() + self.mask.predict_files()
def image(arg, loose=False, **properties):
"""
:doc: im_image
:name: Image
:args: (filename, **properties)
Loads an image from a file. `filename` is a
string giving the name of the file.
`filename` should be a JPEG or PNG file with an appropriate
extension.
"""
"""
(Actually, the user documentation is a bit misleading, as
this tries for compatibility with several older forms of
image specification.)
If the loose argument is False, then this will report an error if an
arbitrary argument is given. If it's True, then the argument is passed
through unchanged.
"""
if isinstance(arg, ImageBase):
return arg
elif isinstance(arg, basestring):
return Image(arg, **properties)
elif isinstance(arg, renpy.display.image.ImageReference):
arg.find_target()
return image(arg.target, loose=loose, **properties)
elif isinstance(arg, tuple):
params = [ ]
for i in arg:
params.append((0, 0))
params.append(i)
return Composite(None, *params)
elif loose:
return arg
if isinstance(arg, renpy.display.core.Displayable):
raise Exception("Expected an image, but got a general displayable.")
else:
raise Exception("Could not construct image from argument.")
def load_image(im):
"""
:name: renpy.load_image
:doc: udd_utility
Loads the image manipulator `im` using the image cache, and returns a render.
"""
return cache.get(image(im), render=True)
def load_surface(im):
"""
:name: renpy.load_surface
:doc: udd_utility
Loads the image manipulator `im` using the image cache, and returns a pygame Surface.
"""
return cache.get(image(im))
def reset_module():
print("Resetting cache.")
global cache
cache = Cache()